
Reducing the Modeling Gap: On the Use of Metamodels
in Agent-Based Simulation

Samer Hassan1, Rubén Fuentes-Fernández1, José M. Galán2, Adolfo López-
Paredes3, Juan Pavón1

1 GRASIA: Grupo de Agentes Software, Ingeniería y Aplicaciones, Dept. Ingeniería del

Software e Inteligencia Artificial, Universidad Complutense de Madrid,
c/ Profesor José García Santesmases s/n, 28040, Madrid, Spain

{samer, ruben, jpavon}@fdi.ucm.es
2 INSISOC: Ingeniería de los Sistemas Sociales. Dept. de Ingeniería Civil, Universidad de

Burgos, Ed. La Milanera, c/ Villadiego s/n, 09001, Burgos, Spain
jmgalan@ubu.es

3 INSISOC: Ingeniería de los Sistemas Sociales. ETS Ingenieros Industriales. Universidad
de Valladolid, Paseo del Cauce s/n, 47011, Valladolid, Spain

adolfo@insisoc.org

Abstract. Although there are many methodologies for the development of
multi-agent systems, these are scarcely applied for agent-based simulation. The
different activities for the creation of an agent based model and its simulation
for the study of a social system, which include abstraction, design,
approximation and coding, are usually performed in a monolithic way. Besides,
when several roles take part in this process, communication problems may arise
between people with different backgrounds and perspectives. This work
proposes the use of agent oriented software engineering methods and tools,
relying on a modeling middle-layer to solve or reduce these communication and
integration problems. In particular, a meta-modeling approach using
INGENIAS is applied for multi-agent systems, as a high-level formal
methodological language, to define languages in the form of diagrams that are
conceptually close to the domain-expert, in this case for simulation of social
systems. This paper shows how this approach can facilitate the communication,
specification, implementation and validation of social simulation models. A
case study of an urban dynamics data-driven model illustrates this discussion.

Keywords: Agent-based modeling, agent-oriented software engineering,
metamodeling, model driven development, social simulation, urban dynamics.

1 Introduction: roles in agent-based modeling

In the lasts decades, computer simulation in general, and agent based modeling
(ABM) in particular, has become one of the mainstream modeling techniques in many
scientific fields, especially in Social Sciences such as Economy [1] or Sociology [2,
3]. ABM allows modelers to complement non-formal models, usually expressed in

natural language, with computer models, which are more formal. This combination
avoids, at least partially, including brave assumptions to make it analytically tractable
[4]. One of the main advantages of ABM, and in our opinion the one that distinguishes
it from other modeling paradigms, is that it facilitates a direct correspondence
between the entities in the target system, and the parts of the computational model
that represent them (i.e. the agents) [5].

The process of abstraction to transform the real target system into a simulation
model is a complex one. The process involves different subtasks and roles, which
need diverse backgrounds and competences in the design, implementation and use of
an archetypical agent based simulation. Drogoul et al. [6] identify three different roles
in the modeling process: the thematician, the modeler, and the computer scientist.
This classification has been expanded by Galán et al. [7] using the framework
proposed by Edmonds [5], including an additional role, the programmer.

The role of the thematician, which ideally would be performed by an expert in the
domain, aims at producing the first conceptualization of the target system. This task
entails: defining the objectives and the purpose of the modeling exercise; identifying
the relevant components of the system and the relations between them; describing the
most important causal dependencies.

The modeler’s job is to produce formal requirements for the models starting from
the thematician’s ideas. These requirements allow the computer scientist to formulate
a feasible model that can run in a computer. However, not all the formal
specifications can be directly implemented in a computer. The computer scientist role
finds a suitable approximation to the modeler’s formal model that can be executed in
a computational system with the available technology. Finally, the programmer’s role
is to implement the computer scientist's model to a target simulation platform.

In practical terms, modeling in social sciences faces two problems. In individual
developments, it is difficult that one person has all the expertise required; in teams,
there are communication problems.

The first problem appears when the same person plays all the roles of the process
[6-8]. Minar et al. [9] explain its negative consequences as follows: “Unfortunately,
computer modeling frequently turns good scientists into bad programmers. Most
scientists are not trained as software engineers. As a consequence, many home-grown
computational experimental tools are (from a software engineering perspective)
poorly designed”. Besides, scientists may find difficult understanding the detailed
behavior of the underlying software, since doing it would imply a full understanding
of its implementation.

On the other hand, many problems require a multidisciplinary perspective,
involving members with specialized roles. The second problem arises because
effective communication between experts of fundamentally different domains (e.g.
sociology and computer science) is not trivial. In most cases, it is difficult to grasp
how the social features have been mapped to program constructions. Thus, there are
difficulties to assure that the program really implements its conceptual model.

To address these problems, our research promotes the creation of a set of high-
level tools, methods and languages, to assist the transfer of models between different
roles in the modeling process. These tools should work with modeling languages that
include, ideally, concepts close to the thematician’s background, but at the same time
representing ideas from a software engineering point of view. We must take into

account that any mismatch between the specifications and the actual model passed to
the next stage, will end up producing an error.

Moreover, a high-level communication tool may also help in the validation. Model
validation is the process of determining that the model behavior represents the real
system to satisfactory levels of confidence and accuracy, which are determined by the
intended model application and its application domain. When dealing with complex
systems, as it is frequent on ABM, the traditional methods used in model validation
are not widely accepted [10]. In such cases, a good option for the validation of the
conceptual model is to check whether the theoretical foundations and assumptions are
reasonable within the context of the objectives of the simulation. This structural
validation is sometimes performed on the basis of participatory methods with experts
in the modeled domain and stakeholders [11]. Again, these expert panels do not
usually have a software engineering background. Intermediate languages between the
different roles endowed with a high-level descriptiveness facilitate the
communication, modification and criticism of the models in the validation stages.

The rest of the paper is organized as follows. The high-level communication tool
chosen, the metamodels, is introduced in the next section, together with an
explanation on how to apply them in agent-based social simulation. Subsequently, the
methodological process is illustrated step-by-step by means of a case study about a
data driven urban dynamics model. The paper ends with a discussion and concluding
remarks concerning the approach.

2 A Middle-layer for Agent-based Modeling: Metamodels

2.1 Introducing Metamodels to Social Scientists

In order to solve the mentioned problems, some authors [12] consider the use of
domain-specific languages (DSL) [13] to produce intermediate models between the
thematician’s abstract non-formal models and the final program, but close to the
thematician’s view. A DSL explicitly defines its concepts, attributes, relationships,
and potential constraints applicable to the models specified with it. These elements
are “domain-specific” because they are extracted from the target domain. Thus,
researchers working with a DSL specify their models using the language of their
discipline. Moreover, since the language elements are clearly defined, mapping them
to software constructions is significantly easier and more reproducible than in the case
of an arbitrary set of elements, which is the situation with non-formal descriptions.

Metamodels [14] are the main resource to define graph-like DSL. A graph-like
DSL has nodes (i.e. entities or concepts) linked by arcs (i.e. relationships or
references), and both of them can have properties (i.e. features or attributes). A
metamodel for a given DSL defines the types of nodes and arcs that correspond to the
domain concepts. It indicates their names and attributes, and the rules and constraints
that they satisfy, for instance the concepts a relationship can link or its cardinality.

Metamodels have two key advantages for defining DSL. First, they can be
extended to satisfy specific modeling needs: if the current form of the DSL is not

José Manuel Galán ! 29/6/09 12:45
Comentario: Aquí se debería definir que es un
metamodelo

enough to model a given problem, new elements can be introduced as extensions or
specializations of the existing ones. These new elements provide an accurate
representation of the domain notions according to the definition of the thematician.
Second, metamodels are broadly used in Model-Driven Engineering (MDE) [15] for
software development. Thus, there is a wide range of support tools to work with them.
For ABM is particularly relevant the availability of graphical editors to define these
metamodels and to generate from them customized editors for DSL. This facilitates
providing researchers with specific modeling tools for their domains, which improve
their productivity and reduce the probability of mistakes.

Table 1. Main concepts of the INGENIAS modeling language.

Concept Meaning Icons
Agent An active concept with explicit goals that is able to initiate

some actions involving other elements of the simulation.
Role A role groups related goals and tasks. An agent playing a

role acquires the goals and tasks of such role.
Environment
application

An element of the environment. Agents act on the
environment using its actions and receive information
through its events.

Goal An objective of an agent. Agents try to satisfy their goals
executing tasks. The satisfaction or failure of a goal
depends on the presence or absence of some elements (i.e.
frame facts and events) in the society or the environment.

Task A capability of an agent. In order to execute a task, certain
elements (i.e. frame facts and events) must be available.
The execution produces/consumes some elements as result.

Frame Fact An element produced by a task, and therefore by the agents.

Event An element produced by an environment application.

Interaction Any kind of social activity involving several agents.

Group A set of agents that share some common goals and the
applications they have access to.

Society A set of agents, applications and groups, along with some
general rules that govern the agent and group behavior.

2.2 Applying Metamodels to Agent-Based Modeling

The proposed approach for ABM is based on an agent-oriented software engineering
methodology, INGENIAS [16, 17]. There are two main reasons for the choice of
INGENIAS as starting point for this work. First, its modeling language supports well
the specification of organization structure and dynamics, as well as agent intentional
behavior, characteristics that are present in social systems. This is a feature that
general purpose modeling languages lack. This language is supported by the

INGENIAS Development Kit (IDK) with a graphical editor, which can be extended to
introduce new modeling concepts. Second, INGENIAS promotes a model-driven
engineering approach [12] that facilitates the independence of the modeling language
with respect to the implementation platform. This is especially important here in order
to abstract away programming details and concentrate on modeling and analysis of
social patterns. With this purpose the IDK supports the definition of transformations
between models and code for a range of implementation platforms.. The purpose of
this work is to shift this focus to DSL for social sciences researchers, providing a
process and tools for the development of domain-specific social simulations.

Table 1 summarizes the main concepts of INGENIAS used in the rest of the paper.
Note that this table considers concepts but not their relationships. The relationships
used in the case study have self-explanatory names, although the paper explains them
when introduced. Consider for instance the relationship “WFProduces” from a “Task”
to a “Frame Fact”. The first two letters indicate the main type of INGENIAS diagram
where the type of relationship appears. In this case, “WF” stands for “WorkFlow”
diagram. The rest of the name provides the meaning of the relationship. “Produces”
shows that the fact is the result of the execution of the task. Inheritance relationships
deserve special attention, since they are the simplest means to add new specialized
concepts. The new sub-concept inherits all the features of its super-concept (as in
standard object-oriented programming) but it can extend or constrain them.

According to the elements available in the INGENIAS modeling language, a
simple process can be proposed to define the metamodel and related models for a
given problem domain. Fig. 1 summarizes this process. Each round rectangle
represents an activity, and activities between thick horizontal lines are carried out in
parallel. The involved activities and decisions are:
1. Domain analysis. Thematicians consider the concepts that are required to express

their hypotheses and the related information in the group or society.
2. Determine interactive concepts. Among the domain concepts, some of them

focus on the analysis, and thus they are considered as decision makers that follow
certain rationality. Besides, some concepts represent elements that initiate
interactions with others, for instance asking for some services. All these concepts
are candidate agents in the ABM and therefore they are represented as subclasses
of Agent. Note here that, as it will be shown in the case study, an agent is not
necessary a living-like being: any element that engages in interactions with other
elements of the system should be modeled also as an agent.

3. Determine non-interactive concepts. Passive elements that do not take decisions
are regarded as part of the environment. In INGENIAS, these elements are
modeled as subclasses of the environment application.

4. Determine specialization hierarchies between concepts. The elements introduced
for a problem usually share some features. In order to highlight the common
aspects of elements and encourage their reusability, these new elements are
arranged in inheritance hierarchies. A super-concept contains all the
elements/attributes and participates in all the relationships common to its sub-
concepts. Sub-concepts only modify their own specific features, constraining or
adding some features of the super-concept.

5. Determine groups and societies. In case that several agents share common global
goals or environment applications, they can be gathered in groups. If they also
share common rules of behavior, they constitute a society.

6. Determine interactions. To carry out the activities of the system, agents act on
environment applications, receive information from them, and communicate with
other agents exchanging elements of the system. A group of interconnected
activities aimed at satisfying a global goal constitutes an interaction.

7. Assign roles, objectives and capabilities to agents. INGENIAS refines agent
definitions with the tasks they are able to do, which correspond to their
capabilities and goals. A goal is linked to the tasks which are able to satisfy it.
These tasks produce some elements (i.e. frame facts). The presence or absence of
some frame facts and events (produced by environment applications) are
evidence of the satisfaction or failure in the achievement of the goal.

8. Refine interactions. A refined interaction indicates the agents and environment
applications that participate in it, the tasks that agents execute, the goals they
pursue with those executions, and the elements produced and consumed in it.

9. Validate ABM. These agent-based models are a refinement of the thematician’s
non-formal models. They are expected to represent it accurately, while providing
additional details that facilitate the transition to the running system.

Fig. 1. Simplified process for the definition of metamodels and models for ABM.

Two remarks must be done about this modeling process. First, although it has been
described as sequential, researchers do not need to follow the activities in this order.
For instance, if there is a precise idea of the existing interactions, modelers can begin
with activity 5 and then use this information to discover the agents and environment

applications. Besides, this presentation of the process is necessarily simplified given
the space limitations, but more detailed activities are required to provide a full
modeling guideline. Second, the previous process can be used to describe models or
metamodels. If the concepts have a wide application for a domain, they become part
of the metamodel; if they are specific for a problem, they remain at the model level.

This process can be regarded as recursive. That is, a given model can be the
abstract model for a new and more platform-oriented model. This allows a transition
from the abstract non-formal description to the program in several steps, improving
the traceability of the process. This approach is in the basis of MDE, and INGENIAS
fully implements it. The advantage of this decomposition is the possibility of using
specific guidelines and support tools for each step, which crystallize and automate the
expertise of thematicians and modelers and helps novel researchers.

3 Case Study

3.1 Context

The case study selected to illustrate the methodology presented in this paper is a
model of urban dynamics. Several complementary theories from fields as Sociology,
Geography, Political Science or Economics attempt to explain the complex problem
of the dynamic spatial occupation [18]. There are different levels of abstraction where
ABM has been used to model urban dynamics [19]. The lowest-level of abstraction is
devoted to the application of very descriptive data-driven ABM in the analysis of
realistic urban problems, making an intensive use of data (extracted, for instance,
from Geographic Information Systems (GIS) and databases).

In order to illustrate the usefulness of metamodeling with INGENIAS in social
simulation contexts, a data-driven urban dynamic model has been selected. One of the
most descriptive models of urban dynamics applied to real systems is the Yaffo-Tel
Aviv model developed by Benenson et al. [20, 21]. It considers the stress-resistance
hypothesis [22, 23] as the force that explains intra-population movements in cities.
This model has been adapted to the Valladolid metropolitan area (Spain) and, together
with other socioeconomic models, is used for exploring the dynamics of urban
phenomena [24, 25]. In order to adapt it to this new context and develop the different
layers of the model, extensive discussions with domain experts (thematicians) were
needed. The description presented in this section is a result of the intensive
communication between modelers and those thematicians.

The model comprises two different layers. The first layer is retrieved from a
vectorial GIS. This GIS explicitly represents every block with households in the
studied geographical region and characterizes them by their spatial and
socioeconomic characteristics. In the second layer, the computational agents
representing the families that live in the area are spatially situated.

The main assumption of the model is that agent’s selection of residence is
influenced by intrinsic features of the candidate households and by the similarity of

the agents’ socioeconomic factors with those of their neighborhoods. Thus, some of
the rules of behavior of the agents in this model are based on the concept of
neighborhood, defined taking into account the centroids of their blocks and the
Voronoi tessellation. The variable “residential dissonance” quantifies the dissimilarity
between an agent, its neighborhood and its household. The probability that an agent
leaves a residence is considered proportional to such residential dissonance. This
variable may be influenced by differences in terms of nationality or education level,
or by imbalances between an agent’s wealth and the value of the house where it lives.

Once each agent has calculated the dissonance, the opportunity to change its
current residence is modeled through a stochastic process that transforms dissonance
into probability of change. Those selected agents are included in a set M of potential
internal migrants. If external immigration is enabled, immigrant agents are also
included into the set M. Subsequently, each agent A in M estimates the attractiveness
(one minus the dissonance) of a number of candidate empty households HA.

The last step of the algorithm entails the assignment of agents in set M to empty
households. Each potential migrant chooses the household found with highest
attractiveness. If the dwelling is already empty, the agent occupies it with a
probability depending on its attractiveness; if it is not, the agent removes the
household from its HA list. The process is iterative until HA is empty for all the agents
in M. In each iteration, the order of the agents is randomly selected to avoid bias in
the agent selection [26]. The agents that have not been able to find a suitable house
leave the city with probability LA and remain in its current house with probability 1-
LA. The immigrant population without household leaves the city as well.

Another submodel dynamically updates the prices of the households [27, 28]. The
value of a household depends on the wealth of its family and neighbor families, and
the value of the surrounding empty houses. The value of the empty households
decreases at a constant rate considered as an exogenous parameter of the model.

3.2 Following the Steps

The development of the model for the case study following the previous methodology
is as follows. Activity 1 corresponds to the descriptive analysis realized by the
thematician before the discussions which resulted on the previous subsection, already
from the modeler’s point of view.

Activity 2 and 3 are made in parallel to identify the entities in the system. In this
case, there are at least two active elements, the families and the households. Families
initiate interactions to keep low their dissonance level; households perform an
interaction with other households to update their value. Thus, both elements are
modeled as two different classes of agents.

According to the specification of the problem, when a family wants to migrate, it
receives a list of potential candidate households for migration, chosen randomly all
over the city. However, communication constraints only allow a family to
communicate directly with their neighbors, not all over the city. In order to allow
families to get this information about other parts of the city, we introduce a map
environment application, which is a non-interactive concept as defined in Activity 3.

The map is part of the environment and it provides methods to get the list of empty
households and retrieve the house data (such as if it is empty).

Fig. 2. The city society and its components. For the legend see Table 1.

Activities 4 and 5 are intended to create hierarchies and groups of elements that
share features. At this step, there are only two types of agents and one environment
application, so the hierarchies are flat. In order to represent the organization of the
city, a society is introduced, together with three groups that can be seen in ¡Error!No
se encuentra el origen de la referencia.. The city society comprehends all the
participants in the problem. They share rules of collaborative (e.g. all the agents are
willing to provide the requested information) and non-violent behavior (e.g. no family
can occupy the household of other family, and no household can eject its family). The
three groups in this society are families, households, and neighborhoods. The
neighborhoods include the households and the families that are able to communicate
among them. This information is used to make explicit the influence of the
neighborhood in the calculation of the dissonance level and the price of households.
Note also that this information is useful in the implementation of the model. As
Repast [29] was chosen as target platform, an agent can only communicate with those
placed in adjacent cells. Thus, the neighborhoods tell us which agents must be in
which cells. This is a typical example of information with social basis refined to guide
the implementation.

Activity 6 identifies the relevant interactions for the problem: the calculation of the
household prices and the family dissonance levels. Due to space restrictions, the
following diagrams focused on the second interaction.

Activities 7 and 8 identify the tasks and goals of agents, the elements exchanged
and their relations to specify the interactions. Fig. 3 and Fig. 4 include part of the
results of these activities. They focus on the workflow the family agent performs after
it finds out that its dissonance level is too high with respect to its neighborhood.

Fig. 3 shows the part of the workflow where the family agent looks for a suitable
and unoccupied household. It begins asking for H unoccupied households using the
map. Afterwards, it filters the list to get only the households whose dissonance level
is below its threshold. Then, the family uses the map to try to get one of the suitable
households. Note that according to the specification of the non-formal description, all

the families that are uncomfortable with their households try to make these tasks at
the same time. First, all of them get the list, then they filter it, and afterwards each of
them tries to get into a household. Given this order, it is possible that when a family
tries to occupy an initially unoccupied household, another discontent family that
chose first has already occupied it. For this reason, the task check household can fail.

Fig. 4 shows the interaction where the family agent asks the target household agent
to accept it. All the involved tasks need to use the map for communication, as it
appears in Fig. 3.

Fig. 3. Migrate in the city workflow for the family agent. For the legend see Table 1.

Fig. 4. End of the migrate in the city workflow with the interaction between the family agent
and the target household agent. For the legend see Table 1.

4 Discussion and Concluding Remarks

The introduction of a high-level language, which is founded on well established agent
concepts and close to the domain-expert, in the form of understandable diagrams,
facilitates communication, specification, implementation and validation of agent-
based models for the simulation of social systems. This has been validated by
providing guidelines for agent-based modeling using the support of the default

modeling tools of a specific agent-oriented modeling language, INGENIAS. A case
study on urban dynamics has been used to describe the process step-by-step.

This framework will allow the specification of social systems with a graphical
modeling language, the simulation of the models of these systems by exploiting the
capabilities of existing agent-based simulation tools/platforms, and the identification
and analysis of social patterns (at a macroscopic, or aggregate, level) in terms of the
atomic elements of the social system specification (at a microscopic, or
individual/interaction, level). The advantages go further than usability. As it has been
discussed in [12], this solution facilitates the replication of an experiment on different
simulation engines, in order to contrast results. The availability of a graphical view of
the system facilitates its understanding too and improves the identification of patterns
in the system.

It has still to be evaluated the effort of learning a new language, but, in principle, a
visual modeling language should be easier to use than a typical programming
language. The main issue, however, is the effort that is required to adapt existing
agent metamodels for creating a domain specific language. However, in the case of
INGENIAS, this adaptation is feasible as both the language and the tool easily allow
extensions to introduce new concepts and relations, together with graphical icons for
them. A possible extension could be to differentiate the neighborhood from a standard
agents group (such as “Families”), as it should be related with the space in some way.

Despite of these issues, this approach is considered a step forward in the search of
more reliable and transparent agent-based models. The increase of formalization
associated, together with the facilitation of replication, would restrain the typical
criticism of complex models as obscure black-boxes.

Acknowledgments. We acknowledge support from the project “Agent-based
Modelling and Simulation of Complex Social Systems (SiCoSSys)”, supported by the
Spanish Council for Science and Innovation, with grants TIN2008-06464-C03-01 and
TIN2008-06464-C03-02 and the Junta de Castilla y Leon with grant GREX251/2009.

References

1. Tesfatsion, L., Judd, K.L. Handbook of computational economics, Vol. 2: Agent-Based
Computational Economics. Elsevier, Amsterdam (2006).

2. Macy, M.W., Willer, R.: From factors to actors: Computational sociology and agent-based
modeling. Annual Review of Sociology. 28 (2002) 143-66.

3. Gotts, N.M., Polhill, J.G., Law, A.N.R.: Agent-based simulation in the study of social
dilemmas. Artificial Intelligence Review. 19 (2003) 3-92.

4. Gilbert, N. Agent based models. Sage, London (2007).
5. Edmonds, B.: The Use of Models - making MABS actually work. In: Moss, S., Davidsson,

P. (eds). Multi-Agent-Based Simulation, LNAI Vol. 1979. Springer-Verlag (2001) 15-32.
6. Drogoul, A., Vanbergue, D., Meurisse, T.: Multi-Agent Based Simulation: Where are the

Agents? In: Sichman, J.S., Bousquet, F., Davidsson, P. (eds). Proceedings of MABS 2002
Multi-Agent-Based Simulation, LNCS Vol. 2581. Springer-Verlag, Bologna (2003) 1-15.

7. Galán, J.M., Izquierdo, L.R., Izquierdo, S.S., et al.: Errors and artefacts in agent-based
modelling. Journal of Artificial Societies and Social Simulation. 12(1) (2009) 1.
http://jasss.soc.surrey.ac.uk/12/1/1.html

8. Gilbert, N., Terna, P.: How to build and use agent-based models in social science. Mind and
Society. 1 (2000) 57-72.

9. Minar, N., Burkhart, R., Langton, C., et al.: The Swarm Simulation System: A Toolkit for
Building Multi-Agent Simulations. Santa Fe Institute Working Paper. 96-06-042 (1996).

10. Brown, T.N., Kulasiri, D.: Validating models of complex, stochastic, biological systems.
Ecological Modelling. 86 (1996) 129-34.

11. López-Paredes, A., Saurí, D., Galán, J.M.: Urban water management with artificial societies
of agents: The FIRMABAR simulator. Simulation. 81 (2005) 189-99.

12. Sansores, C., Pavón, J.: Agent-based simulation replication: A model driven architecture
approach. In: Gelbukh, A.F., de Albornoz, A., Terashima-Marín, H. (eds). MICAI 2005:
Advances in Artificial Intelligence. LNCS Vol. 3789. Springer, Berlin Heidelberg (2005)
244-53.

13. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Computing Surveys. 37 (2005) 316-44.

14. OMG: Meta Object Facility (MOF) Core Specification, Version 2.0. http://www.omg.org.
15. Schmidt, D.C.: Model-Driven Engineering. IEEE Computer. 39 (2006) 25-31.
16. Pavón, J., Gómez-Sanz, J.: Agent Oriented Software Engineering with INGENIAS. In:

Marik, V., Müller, J., Pechoucek, M. (eds). Multi-Agent Systems and Applications III.
LNAI Vol. 2691. Springer-Verlag, Berlin Heidelberg (2003) 394-403.

17. Pavón, J., Gómez-Sanz, J., Fuentes, R.: Model driven development of multi-agent systems.
In: Rensink, A., Warmer, J. (eds). Model Driven Architecture – Foundations and
Applications. LNCS Vol. 4066, Berlin Heidelberg (2006) 284-98.

18. Aguilera, A., Ugalde, E.: A Spatially Extended Model for Residential Segregation. Discrete
Dynamics in Nature and Society. 1 (2007) 48589.

19. Benenson, I., Torrens, P.M. Geosimulation: automata-based modeling of urban phenomena.
John Wiley and Sons, Chichester, UK (2004).

20. Benenson, I., Omer, I., Hatna, E.: Entity-based modeling of urban residential dynamics: the
case of Yaffo, Tel Aviv. Environment & Planning B. 29 (2002) 491-512.

21. Benenson, I.: Agent-Based Modeling: From Individual Residential Choice to Urban
Residential Dynamics. In: Goodchild, M.F., Janelle, D.G. (eds). Spatially Integrated Social
Science: Examples in Best Practice. Oxford University Press, Oxford, UK (2004) 67-95.

22. Wolpert, J.: Behavioral Aspects of the Decision to Migrate. Papers and Proceedings of the
Regional Science Association. 15 (1965) 159-69.

23. Speare, A.: Residential satisfaction as an intervening variable in residential mobility.
Demography. 11 (1974) 173-88.

24. Galán, J.M., del Olmo, R., López-Paredes, A.: Diffusion of Domestic Water Conservation
Technologies in an ABM-GIS Integrated Model. In: Corchado, E., Abraham, A., Pedrycz,
W. (eds). HAIS '08: Proceedings of the 3rd international workshop on Hybrid Artificial
Intelligence Systems. LNAI Vol. 5271. Springer, Berlin Heidelberg (2008) 567-74.

25. Galán, J.M., López-Paredes, A., del Olmo, R.: An agent based model for domestic water
management in Valladolid metropolitan area. Water Resources Research. 45 W05401
(2009) doi:10.1029/2007WR006536.

26. Kubera, Y., Mathieu, P., Picault, S.: How to Avoid Biases in Reactive Simulations. In:
Demazeau, Y., Pavón, J., Corchado, J.M., et al. (eds). Advances in Intelligent and Soft
Computing. Vol. 55. Springer, Berlin / Heidelberg (2009).

27. Benenson, I.: Multi-Agent Simulations of Residential Dynamics in the City. Computing,
Environment and Urban Systems. 22 (1998) 25-42.

28. Benenson, I.: Modeling population dynamics in the city: from a regional to a multi-agent
approach. Discrete Dynamics in Nature and Society. 3 (1999) 149-70.

29. North, M.J., Collier, N.T., Vos, J.R.: Experiences Creating Three Implementations of the
Repast Agent Modeling Toolkit. ACM Transactions on Modeling and Computer Simulation.
16 (2006) 1-25.

