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Abstract. Simple models of agents have been used to study emergent behaviour 

in social systems. However, when considering the evolution of values in human 

societies, there is a need for the consideration of more complex agent models, 

which take into account uncertainty in human thinking. This characteristic can 

be addressed by using fuzzy logic in the specification of the attributes that 

describe agents representing individuals, the functions that model the evolution 

of individual change of mind, the relationships among individuals in a social 

network, the inheritance, and the similarity between individuals. The 

introduction of fuzzy logic in the models has improved the results of the 

simulation. 
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1   Introduction 

Agent based social simulation (ABSS) is applied as a tool for the study of the 

evolution of social systems. Although this has proved successful for a considerable 

number of cases, simple agent models as those normally used with existing tools are 

not sufficient to deal with the analysis of the evolution of values in human societies. 

Taking, for instance, sociological surveys, such as the European Value Survey, which 

is run periodically, we can see that, although there is an effort to categorize the 

possible answers to questions such as “Do you trust political parties?”, there is always 

a certain degree of uncertainty that has to be considered. This is even more evident 

when considering the evolution of values in individuals. This evolution is a 

consequence of multiple factors, which are strongly intertwined.   

Fuzzy logic can be helpful to handle approximate or uncertainty knowledge. Here 

we propose to study how fuzzy logic can be useful for ABSS modeling. We analyze 

the different aspects that can be fuzzificated from an ABSS model, so it gets better 

adapted to reality, and more specifically to facilitate the study of the evolution of 

values in human societies. In concrete, this work has been applied to model and 

simulate the evolution of religiosity in European societies, based on a Sociology work 

[1]. Although this has been implemented on RePast [7], a well known ABSS tool, 



some additions have been made to the existing library in order to be able to model and 

operate with fuzzy logic attributes, and relationships. 

Section 2 reviews concepts about social systems simulation, and introduces the 

system under study, which is taken for experimentation ideas. Section 3 introduces 

fuzzy logic concepts related to this environment. Section 4 presents each part of the 

model that is fuzzificated. Finally, Section 5 summarizes the main results and 

contributions of this work and issues for improving this framework. 

2   Modeling and Simulation of Social Systems 

Social phenomena are extremely complicated and unpredictable, since they involve 

complex interaction and mutual interdependence networks. A social system consists 

of a collection of individuals that interact among them, evolving autonomously and 

motivated by their own beliefs and personal goals, and the circumstances of their 

social environment. 

A multi-agent system (MAS) consists of a set of autonomous software entities (the 

agents) that interact among them and with their environment. Autonomy means that 

agents are active entities that can take their own decisions. In this sense, the agent 

paradigm assimilates quite well to the individual in a social system, so it can be used 

to simulate them, exploring the complexity of social dynamics. With this perspective, 

agent-based simulation tools have been developed in the last years to explore the 

complexity of social dynamics. An agent-based simulation executes several agents, 

which can be of different types, in an observable environment where agents’ 

behaviour can be monitored. Observations on agents can assist in the analysis of the 

collective behaviour and trends of system evolution. This provides a platform for 

empirical studies of social systems. As simulation is performed in a controlled 

environment, on one or several processors, this kind of tools allows the 

implementation of experiments and studies that would not be feasible otherwise. 

There are, however, some limitations when trying to simulate real social systems. 

The main issue is that the individual, with regard to a software agent, is by itself a 

complex system, whose behaviour is unpredictable and less determined than for an 

agent, whose behaviour and perception capabilities can be designed with relative 

simplicity. Moreover, it is not possible in practice to consider the simulation of 

countless nuances that can be found in a real social system with respect to agent 

interaction, characterization of the environment, etc. For this reason, it is impractical 

to intend the simulation of a social system in all dimensions. On the other hand, we 

should and can limit to simulate concrete social processes in a systemic and 

interactive context. Therefore, the simulation of social systems should be considered 

in terms of focus on a concrete process. 

In spite of these limitations, the agent paradigm offers many advantages to express 

the nature and peculiarities of social phenomena. However, existing agent based 

simulation tools promote the use of rather simple agent models, basically as a kind of 

cellular automata [11]. This may be valid to study emergent behaviour that results 

from deterministic behaviour of agents. But, when considering the evolution of 



complex mental entities, such as human believes and values, that approach is rather 

limited.   

As an example of a system that requires further considerations on agent modeling, 

consider some sociological analysis derived from the European Value Survey and of 

the World Value Survey (for instance, [4]). In these surveys there are many questions 

about the degree of happiness, satisfaction in different aspects of life, or trust in 

several institutions. Although there is some kind of categorization for the possible 

answers, such as “Very much” “Partially”, etc., there is always some degree of 

imprecision hardly to model with discrete categories. Even more, when the individual 

is evolving to different positions, some of these values get even more undefined. In 

order to take into account this kind of issues, fuzzy logic has been applied to model 

different aspects of the multi-agent system: agent attributes, functions for similarity 

and evolution of agent behaviour, relationships among agents in social networks, and 

inheritance. 

3   Fuzzy Logic in this Context 

Fuzzy logic is useful in vague and uncertain environments [12], as it is the case in the 

study of human societies. For its application in the modelling of ABSS, we have 

counted with the help of a sociology expert, which has been consulted repeatedly 

along the process.  

Given a universe of discourse U, a fuzzy set  µ: U → [0,1] on the set U gives a 

membership degree to every element of U in the interval [0, 1]. 

A binary operation T: [0, 1] × [0, 1] → [0, 1] is a t-norm [2][9], if it satisfies the 

following axioms: 

1. T(1, x) = x 

2. T(x, y) = T(y, x) 

3. T(x, T(y, z)) = T(T(x, y), z) 

4. If x ≤ x’ and y ≤ y’ then T(x, y) ≤ T(x’, y’). 

The t-norms can be used to define the intersection of fuzzy sets, as follows: 

µΑ∩Β(x) =  Τ(µΑ(x), µΒ(x) for all x in U. In a similar way, it can be defined the union 

and complements of fuzzy sets.  

Fuzzy relations R: UxU→ [0, 1] have many applications to make fuzzy inference 

in many branches of Artificial Intelligence with uncertainty, imprecision or lack of 

knowledge.  

Let T be a t-norm [9]. A T-indistinguishability [10] relation is a fuzzy relation on a 

universe E, S:ExE→[0,1], satisfying reflexivity, symmetry and T-Transitivity (i.e., 

T(S(a, b), S(b, c)) ≤ S(a, c) for all a, b, c in E). 
A similarity relation [13] is a Min-indistinguishability.  

The classical concept of transitivity is generalised in fuzzy logic by the T-

transitivity property of fuzzy relations. 

The similarity fuzzy relations generalise the classical equivalence relations, so it is 

important to define crisp partitions of a set. 



The T-transitive closure R
T
 of a fuzzy relation R is the lowest relation that contains 

R and is T-transitive. There are many proposed algorithms to compute the T-transitive 

closure [5]. 

An algorithm used to compute the transitive closure is the following:  

1) R’ = R ∪Max (RoSup-TR)  

2)  If R’ ≠ R then R := R’ and go back to 1), otherwise stop and R
T 
:= R’. 

In this paper, we define fuzzy sets and fuzzy relations on the universe of 

individuals U = {Individual}i=1..N   

4   Fuzzification of Agent Model 

The case study presented in [6] has been enriched with the use of fuzzy logic in five 

aspects: relationships among agents, some variable attributes that determine agent 

state, and functions of similarity and evolution of agent state, and inheritance. These 

are discussed below. 

The multi-agent system in [6] defines two possible relationships among individuals 

(agents): friendship and family. Friendship is naturally predisposed to be fuzzified: 

defining friendship as a boolean (to be or not to be friend) is unrealistic, because in 

reality there is a continuous range of grades of friendship. Therefore, friendship is 

defined as a fuzzy relationship, with real values between 0 and 1. 

Let Rfriend : UxU → [0,1] be the fuzzy relation on the set of individuals that give a 

degree of “friendship”. This fuzzy relation gives a degree of friendship for every 

couple on individuals in the interval [0, 1]. And the classic set Friends (Ind) is defined 

as all the individuals whose Rfriend(Ind) is greater than 0. 

And so and individual will have a range from true close friends to just “known” 

people. Of course, some restrictions to this definition could be introduced in order to 

suit context needs. Equivalent to friendship, we can fuzzificate the family link, 

although is not as trivial as before: this relationship would be closer to 1 in direct 

family (parents, brothers), further as the relative relation, and 0 with people whose is 

not family at all. Thus, Rfamily could be defined in a similar way. 

On the other hand, there can be relationships that cannot be fuzzified. There is a 

“special kind of friendship”: the couple. A stable couple can be perfectly defined as a 

crisp relation: you have one, or you don’t. There isn’t a specific process for finding a 

couple, so we decided to ask our sociology expert and build up a general definition 

for it. An agent will find a couple (always with a random possibility of failure not 

defined in the mathematical definitions) between the friends that have different sex, 

are adults and have no couple. The chosen one will be the “most compatible” one, 

where compatibility is defined as the aggregation of how friends are they and how 

similar are they. Formally: 

Let Rhas_couple : U → {true, false} be the crisp relation on the set of individuals that 

give if an individual has couple or not. This relation is defined by: 

Rhas_couple (Ind) := (Rcouple (Ind) ≠ null)  
Where Rcouple : UxU → {Individual} can be defined as: 



Rcouple (Ind, Ind2) := Adult(Ind) AND Ind2 = max Rcompatible ( Ind,{ Indi 

∈ Friends(Ind) where (Rcouple (Indi) := false AND Sex(Ind) ≠ Sex(Indi) AND 

Adult(Indi) ) ) }  

Where Rcompatible: UxU → {Individual} can be defined as: 

Rcompatible(Ind, Ind2) := OWA ( Rfriend(Ind, Ind2), Rsimilarity(Ind, Ind2) ) = w1 * 

Rfriend(Ind, Ind2) + w2 * Rsimilarity(Ind, Ind2) 

An OWA (Ordered Weighted Averaging) [8] is a family of multicriteria 

combination (aggregation) procedures. By specifying suitable order weights (which 

sum will result always 1) it is possible to change the form of aggregation: for 

example, if we want the arithmetic average in the example OWA we can give the 

value 0.5 to both weights. 

But here we have introduced a new concept: similarity. In the original MAS the 

similarity was modelled and implemented through a not normalized crude 

gratification algorithm, based on the amount of points gathered from the comparison 

of the agents’ crisp attributes. By defining fuzzy sets over these variables (the 

attributes) and fuzzificating the similarity operator based on them we will be able to 

have much more accuracy in the determination of similarity between individuals. 

Moreover, with those fuzzy set we will be able to make inference based on them. 

Therefore, we continue by defining these fuzzy sets based on the variables that 

define each individual. Even though there are some of them that are not fuzzificable, 

like the sex, the most part of them will let us define a fuzzy set over them. For 

example: Let µreligious : U → [0,1] be the fuzzy set that gives a religious grade based on 

the religiosity variable of the individual. This set can be defined by segments with 

different growth (orthodox people, moderated religious ones, agnostics, atheists…) or 

by a linear function. Thus, µreligious(Ind) = 0.2 would mean that this person is mainly 

not religious. The same way we could continue with other fuzzy sets. 

Now, with fuzzy sets over the attributes, we can define the fuzzy similarity. For 

defining it we will use a T-indistinguishability, which generalizes the classical 

equivalences. It can be obtained from the negation of a T*-distance, as it is shown in 

the preliminaries. This way, aggregating the normal distance of each couple of fuzzy 

sets we can obtain the total similarity between two individuals:  

Rsimilarity(Ind, Ind2)= OWA (∀µi defined, N(µi (Ind)- µi (Ind2))) 

We can focus now on the direct interaction between the agents. In this system, we 

want them to influence each other in some attributes: in sex or age would be 

impossible, but it’s logic that your ideology is influenced by your left-winged friends. 

This local influence is, by definition, a “fuzzy concept”: how much you influence a 

person can’t be easily quantified in any way. It’s very difficult to specify this 

interaction, but after a deep analysis and with the help of our expert, we can dare this 

mathematical definition:  

Let ∆Ind
X
 be the variation of the attribute “X” of the individual “Ind” by all its 

environment. We define it as the aggregation of the influence of all its relatives, 

friends and couple. This influenced is determined by the “proximity” of the person, 

the distance between the attribute selected, and how young “Ind” is (if the agent is 

younger, it will be more receptive to be influenced). 

∆Indn
X
 = OWA i=1…N(Rproximity(Indn,Indi) * (XIndn – XIndi) * µyoung(Indn)) 

Let Rproximity(Indn,Indi) : UxU→ [0,1] be the fuzzy relation on the set of individuals 

that give a degree of “proximity”. This fuzzy relation is defined by the aggregation 



(OWA) of the classical relation “couple” with the fuzzy relations Rfriend and 

Rfamily: 

Rproximity (Ind, Ind2) := OWA (Rcouple(Ind, Ind2), Rfriend(Ind, Ind2), Rfamily(Ind, Ind2) 

) = w1 * Rcouple(Ind, Ind2) + w2 * Rfriend(Ind, Ind2) + w3 * Rfamily(Ind, Ind2)   

And of course, the evolution of am attribute is determined, by each individual, as 

XIndn = XIndn + ∆Indn
X
  

With continuous influence the global average of the variables will change over 

time. But there is another source of change: demographic evolution. As time steps go 

on, agents will find couples and have children. Those children must inherit their 

parents’ characteristics in a way. In the crisp MAS we solve this problem in a rough 

way: we obtain the new variables from the average of the parents. But now we have 

defined fuzzy sets based on those variables, so we can use fuzzy operators between 

them. Thus, we decided to use the fuzzy composition for obtaining the variables of 

the new individuals (mixed with a random mutation factor not included in the 

mathematical definition, which was introduced in favour of diversity): 

∀ X attribute of Ind, µx(Ind) = µx (Father (Ind))  o  µx (Mother (Ind))   

Another important side of the agents is their states. The state of an agent is defined 

by its age, and determines its behaviour. Therefore, an agent in the state of “child” 

cannot influence adults and cannot find a stable couple… while an “old” agent won’t 

have children and will have more probabilities of dying. But where are the limits 

between states? In the crisp systems, there are threshold limits that determine that 

change. For example, if an agent has an age over 27, is in the “adult” state, but if it’s 

under it, is in “young”, with a radical different behaviour. This is clearly unrealistic: 

in reality the changes are gradual, as we are maturing. So we will apply fuzzy logic 

again, even though this time is quite difficult: it’s easy to define how young is an 

individual, but it’s difficult to change gradually its behaviour (anyway, it’s an 

implementation problem, which will not be analyzed here). 

The last improvement we propose is for extracting new knowledge from the 

system, using a fuzzy operation: the T-transitive closure. From the repeatedly 

application of transitive property of a relationship, it allows us to discover the 

influence of some variables in other “far” ones (the multiple paths of different length 

between those variables). This operation suits perfectly with the natural transitivity of 

the (fuzzy) friendship relation: the friend of my friend is not very friend of me. And 

so, we can infer inferior friendship grades in others. For example, if A and B are 

friends in a 0.8, and B and C in 0.6, we will be able to deduce that A and C are friends 

in a 0.48. And we could continue inferring how a D agent is friend of A, and so on. 

We are extracting new knowledge from the system, impossible with a crisp relation of 

friendship (we can’t infer that A and C are automatically 100% friends).  

We have imposed T-transitivity [3] of the ‘friendship’ fuzzy relation as a learning 

process of friendship of individuals with a common friend, and also as a coherence 

method.  

The Zadeh’s logic (which uses the t-norm minimum) works well, but we didn’t 

choose it because the friendship of A and C is either the friendship of A and B or the 

friendship of B and C, and there is no reason for that. A and C are probably not as 

friend as with the common friend. This logic looses information in this context.    

The Lukasiewicz logic uses the Lukasiewicz t-norm [9] defined by  W(a, b) = 

max(0,a+b-1). It works well when the common friend is a good friend of both, but it 



infers no friendship when the common friend is not a very good friend of both 

individuals. 

So, the logic we use to infer friendship is the Product logic (using the t-norm 

product). It works well for high and low friendship with a common friend, and it does 

not loose information. For example, if we have a common friend with degree ½, the 

product logic would decide that we are friends with degree ¼, which makes more 

sense that to infer a friendship degree of ½ (Zadeh’s logic) or 0 (Lukasiewicz logic). 

In the classical world, with only 0 and 1 values, all the logics, and transitivity closure 

are the same, but when we dial with the uncertainty of friendship, the product logic 

seems to be the most similar to human reasoning.   

6   Results and Conclusions 

Part of the proposed fuzzification has been applied to an existing system [6]. More 

specifically, the friendship relation, but not the family one. Also, the compatibility 

concept for matchmaking, with all the restrictions, has implied changes in the 

similarity algorithm to a fuzzy version. Besides, we extracted new knowledge through 

the T-transitive closure. There is still the need to implement the fuzzy influence, the 

fuzzy inheritance, and the fuzzy states. With these changes, similarity operation has 

improve sharpness; the couples found are much more “logical” (agents know more 

people than before thanks to the closure, and the similarity measure is better); and the 

friendship is more realistic (not boolean, with grades, and considers more knowledge 

thanks to the T-transitive closure). 

The proposed fuzzification can be applied to other ABSS systems. For instance, the 

example has shown how to fuzzify relations that determine agents’ interactions, even 

mixing fuzzy and crisp values (like in the case of “influence” interaction). Also, 

agents’ attributes can be defined in terms of fuzzy sets. Context-dependant functions, 

like inheritance, were modelled too, as well as a typical fuzzy similarity operation. 

“Life states” of agents are frequent in systems that evolve over time, especially in task 

solving environment. Sometimes, it is convenient to fuzzify those states. Finally, a 

global fuzzy operation over all the agents was defined (the T-transitive closure) on a 

fuzzy relation (friendship) to make inference with coherent results. Other operations 

could be needed and applied in a similar way.  

In order to adapt these definitions to other systems, new constraints that suit 

context needs could be introduced. Fuzzy logic facilitates modeling to domain 

experts, because the linguistic terms can be easily transformed into fuzzy functions. 

Of course, there will be parts of an ABSS system that cannot be (or just we do not 

want to) fuzzified, but we think that fuzzy agents in social simulation can be 

extremely useful. 

Future research lines that can be followed include empowering inference and 

approximate reasoning using fuzzy sets. Fuzzy implications represent a tool with 

great potential, and have solid foundations because they generalize the classic logical 

implication. The only special need they have is that the expert has to decide rules 

from his knowledge, and we must choose the operators that work well in every 



context. That’s not an easy task, more when the field contains huge amounts of 

uncertainty and imprecision.  

Another approach not referred here is to take into account the space and time 

dimensions. Even though space is implicitly covered when we let an agent to 

communicate only with its nearby ones, we ignore if an agent is closer than other: 

geography. This could be seen as another fuzzy relation, where 1 is closest neighbor, 

and 0 now known at all. About timing, it must be said that all the definitions here 

should be taken into account, because in our system continuous time does not exist: 

time is discretised in time steps. This way, all the operations require a step of time. 

For example, a right way would be: XIndn
s+1

 = XIndn
 s
 + ∆Indn

X, s
 where “s” is the number 

of time steps. 
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