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Abstract. A general question that often appears when working with
agent-based modelling and simulation for social systems is whether it is
possible to make predictions with some degree of confidence. Although
many consider that agent-based models are not meant for prediction,
some claim that they are mature enough to be able to predict outcomes of
social processes, as it happens in other fields. This paper first reviews the
current state of this debate. Afterwards, it considers how core principles
from the field of forecasting can be applied in agent-based modelling.
This approach intends to be useful to those modellers who look for the
predictive power demanded by stake-holders and policy makers.
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1 Introduction

Agent-Based Modelling (ABM) has become a widely used technique for research
in Social Sciences [?], especially for understanding social phenomena or to vali-
date social theories. Given its ability to show the evolution of complex systems,
can ABM support forecasting? This question arises quite often (cf. the recent
debate in SIMSOC1, triggered by Scott Moss).

Many researchers, such as Epstein [?], place prediction as a secondary objec-
tive, arguing that there are many other possible reasons to build models different
than prediction. In fact, he lists 16 of them, including explanation, guiding data
collection, raise new questions or suggest analogies. He stresses his point stat-
ing that ‘Explanation does not imply Prediction’, the same way as Tectonics
explains earthquakes but cannot predict them. An interesting reply to these ar-
guments, by Thompson and Derr [?], considers that ‘good explanations predict’,
as explanatory models must appropriately predict real behaviours if they seek to
be considered valid. Troitzsch [?] joins the debate with an important clarification
on the meanings of prediction, arguing that Epstein and Thompson discuss over
different concepts. He defines three levels of prediction:
1 SIMSOC is a mailing list for the Social Simulation field:

https://www.jiscmail.ac.uk/cgi-bin/webadmin?A0=SIMSOC
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1. Prediction of the kind of behaviour of a system, under arbitrary parameter
combinations and initial conditions: “Earthquakes occur because X and Y.”

2. Prediction of the kind of behaviour of a system in the near future: “Region
R is likely to suffer earthquakes in the following years because X and Y.”

3. Prediction of the state a system will reach in the near future: “Region R will
suffer an earthquake of power P in expected day D with confidence C.”

Troitzsch argues that explanation does not have to imply the 3rd level pre-
diction (Epstein’s statement refined), but that good explanations usually imply
1st and even 2nd level predictions (Thompson and Derr’s point refined). In fact,
Heath et al. [?] reach to a similar classification, which can be redefined as follows:
Generators are models whose aim is 1st level prediction (theoretical understand-
ing); Mediators are those whose aim is 2nd level prediction (insight of behaviour);
and Predictors are models seeking 3rd level prediction (estimation). From this
approach, Moss’s debate in SIMSOC can be seen as the difficulty to find a Pre-
dictor model that has been already applied for 3rd level prediction with success.
In fact, in some complex systems that present chaotic regimes, arbitrarily small
variations in initial conditions can lead to very different trajectories. This implies
that in those cases is demonstrably impossible to create models of the 3rd level
of prediction proposed by Troitzsch. However, for the rest of complex systems,
how can the 3rd level of prediction be reached?

Forecasting is a field which focuses on the study of prediction, specially the
aforementioned 3rd level. It has been applied in many contexts for more than 30
years, and this experience has driven to the establishment of a set of principles
that could be reviewed for ABM, if this is to be considered as a tool for making
predictions. This paper explores how these principles can be applied in ABM.

2 Setting up a forecasting experiment

Forecasting is the process of making statements about future events. When there
is uncertainty about a future outcome, formal forecasting procedures can help
to reduce the uncertainty in order to make better decisions, especially if poor
forecasts can lead to disastrous decisions. In the forecasting literature, simu-
lation models are not usually regarded as forecasting tools (see, for instance,
the taxonomy of forecasting methods in [?]). However, and following the discus-
sion in section ??, they may be considered as forecasting tools. Therefore, we
believe that the standard procedure applied by the forecasting community [?]
should guide the construction of Predictor models and the experiments carried
out with them. This procedure should mainly consists on the following points:

– Split the data into two sets: the estimation (or training or in-sample) set,
which is used to adjust the model, and the forecasting (or test or out-of-
sample) set, which is used to truly check the forecasting ability of the model.

– Use an objective error measure: the forecast error in time t (et) is the dif-
ference between the forecasted value (x̂t) and the actual value (xt) in time
t, i.e. (et = x̂t − xt). The time series of forecasted values can be obtained,
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except for the case of some path-dependant models, as the mean of a suffi-
cient number of model runs. In order to aggregate the error in t along time,
many measures can be used [?], such as the Root Mean Square Error, the
Mean Absolute Error and the Mean Absolute Percentage Error.

– Compare your model: if there are simulation models or forecasting methods
that are known to provide reliable forecasts, they should be included in the
comparison. If not, at least the naive method which assumes that the future
value of a time series will be equal to the current value, should be included.

– Establish a fair comparison:
• Use an adequate, representative and large enough sample of forecasts
• Compare on the basis of ex-ante (each forecast only uses information

available by the time of such forecast) and out-of-sample performance

These guidelines are useful for building any simulation model, but they are
specially indicated when forecasting is one of the goals of the simulation. In
this case, it may happen that our simulation model is not the best approach to
forecast. It may be discouraging, but does not invalidate the use of the resulting
model as a proof of concept to explain the dynamics of the studied phenomenon.

3 Guidelines for Forecasting with ABM

The reference book Principles of Forecasting [?] summarises the forecasting prac-
tice along the years and translates the findings into principles. These principles
should guide a forecasting process to make it more effective. We have selected
a subset of them and have adapted them to ABM, adding when possible some
pertinent references from the ABM literature to illustrate the point. The selected
principles mainly deal with six important issues: modelling process, use of data,
space of solutions, stake-holders, validation and replication. These should serve
as guidelines for forecasting with ABM2.

Modelling Process

• Decompose the problem into parts (g.2.3). Do a bottom-up approach
and then combine results. This synthetic approach is inherent to ABM. This
decomposition is again risky, as it might not be unique, and the synthesis
might be a harder problem than the target problem itself. However, the idea
of approaching a problem with a computational stance necessarily implies
some decomposition and synthesis.

• Structure problems that involve causal chains (g.2.6). Sometimes it
is possible to use the results of some models as inputs to other models, and
this allows for better accuracy than simulating everything simultaneously.
Surely, causality can bring on deeper problems than it solves, but some kind
of näıveté can be of use when delving through the web of intricate relations
than build up social reality. Some ABM follow this guideline structuring the

2 The numeration of the volume is included for direct matching, as (g.X.Y).
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models in different coupled layers, each level implementing a submodel which
is used as an input for the others [?].

• Consider the use of adaptive forecasting models (g.16.1). ABM is
essentially an answer to this principle. Everything about ABM is an exercise
of adaptability, and one that responsibly considers every component of a
system that addresses a complex issue, including the human factor and the
field methodologies and practices to be used.

Data-driven Modelling

• Use theory to guide the search for information on explanatory
variables (g.3.1). This in turn allows complexity to be cut down by limiting
the design space in advance. Even in utmost complex problems, there are
some ‘truths’ and ‘facts’ that can be established and used to progress towards
a deeper knowledge of a problem and contribute to its solutions. No truths
are definitive, but that does not mean that we never know anything (e.g.
Benenson’s work empirical work over a previous stress resistance theoretical
model [?]). However, this does not mean to restrict the modelling foundations
just to theoretical literature [?].

• Use diverse sources of data (g.3.4). This enhances data reliability. Differ-
ent sources will bring on different errors, but also different models for data
collection, different methodologies for elicitation, different structures and
representations, different error measures, different stances. If a compromis-
ing error is nested inside the data, it is more likely that it will be detected by
explicit incoherence, than by sheer chance in the absence of different views
on the data.

• Select simple methods unless empirical evidence calls for a more
complex approach (g.6.6). This can be seen as application of the data-
driven Deepening KISS [?] strategy of tackling complexity. In sum, build
up a ‘broad but shallow’ approach to the ABM, keeping components as
simple as you can, but not so simple that they become redundant. Then,
introduce complexity (deeper views) by demand, both as a consequence of
real complexity and as a tool to explore the space of designs. In the same
line, Cioffi-Revilla proposes a systematic developmental sequence of models,
increasing successively details and complexity in the models [?].

• Keep forecasting methods simple (g.7.1). Complex methods may include
errors that propagate through the system or mistakes that are difficult to
detect. Again, KISS, or at least, as Simple as Possible. Deepening is always
possible later, either driven by demand or as an exploration strategy.

Space of Solutions

• Identify possible outcomes prior to making forecasts (g.2.1). This
aids to know the boundaries of the space of possibilities and to structure the
approach in situations where outcomes are not obvious. The goal is to avoid
introducing a bias in the model, caused by overlooking a possible outcome.
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• Adjust for events expected in the future (g.7.5). So, reduce complexity
by adjusting what-if questions and perform sensitivity analysis driven by
expectability. Again, when such complexity is at stake, the use of common-
sense to explore the design space around what is believed to be the most
probable cases is a parsimonious strategy.

• Design test situations to match the forecasting problem (g.13.3). Put
forward scenarios to rehearse policies. Of course, for the sake of parsimony,
these situations can be designed to follow the aforementioned expectabil-
ity, that is, the what-if scenarios of higher likelihood. A significant example
showing simulated scenarios is [?].

Stake-holders and Policy Makers

• Obtain decision makers’ agreement on methods (g.1.5). Stake-holders
should agree on the premisses and methods to be deployed. Their involve-
ment in the ABM deployment and exploration is a keystone of the method-
ology, namely in what involves both the notion of truth/usefulness and the
trust placed in the outcomes obtained. This process is usually carried out
through participatory processes in modelling and validation, e.g. [?].

• Ask unbiased experts to rate potential methods (g.6.2). This empha-
sises the role of stake-holders and their special relation to experimenters. The
involvement of stake-holder is important not only for the development and
deployment of the ABM, but also for the usefulness of its outcomes, conclu-
sions, and its permanence as a tool future decisions. Furthermore, some agent
based models [?] are conceived as iterative projects where stake-holders and
domain experts act as validation loops for each modelling iteration.

• Test the client’s understanding of the methods (g.13.11). The role
of stake-holders, especially important in participatory simulation [?]. But
in any ABM, there should be a clear statement about what the model can
and cannot yield. Never should models be sold as the ultimate solution to
any problem, but rather as a tool that can and should be used to provide
a deeper understanding of the problem and its foreseeable solutions. Stake-
holders involvement is key to the success and usefulness of ABMs.

• Establish a formal review process to ensure that forecasts are used
properly (g.16.4). Again, policy deployment should be controlled previously
to check for appropriateness. When policies are offered to politicians, the
danger is that the full consequences of the models (and their contingent
nature) cannot be fully grasped. A formal procedure to be followed for use
of the ABMs and their outcomes will be decisive to ensure its proper use
and an adequate interpretation of its yieldings.

Validation

• List all the important selection criteria before evaluating methods
(g.6.1). The relevant criteria should be specified at the start of the evaluation
process. Although this should be obvious, the exploratory nature of ABM
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makes this a difficult directive. Nevertheless, to list criteria beforehand is
important, as it allows for subsequent revision. The real danger comes form
having no criteria whatsoever and giving in to the temptation of defining
criteria later to fit the outcomes [?].

• Use objective tests of assumptions (g.13.2). Use quantitative approaches
to test assumptions when possible. Known quantitative methods, especially
statistical and stochastic methods, will strengthen the confidence in the out-
comes. Once again, we try to produce as powerful a model as possible, and
known objective tests will not only better support the model, but also the
trust that the experimenters can have in it and its outcomes [?].

• Use extensions of evaluations to better generalise about what meth-
ods are best for what situations (g.13.14). Generalisation enhances the
scope of applicability. These can be based in the what-if scenarios previously
put forward, but should be carefully performed in order not to introduce
extrapolation (or indeed interpolation) errors. Full and responsible involve-
ment of all participants, including stake-holders is decisive, as generalisations
are the first step for policy prescriptions [?].

• Use error measures that adjust for scale in the data (g.13.20). Error
measuring is as important as accuracy of data. To know a model is to know
its limitations. Errors in data are just one possible cause of trouble. In fact,
this recommendation can be increased in level of abstraction and be applied
to programming errors, design errors, biases, wrong objectives, etc.

• Establish a formal review process for forecasting methods (g.16.3).
This is especially important to perform the sensitivity analysis of policies de-
rived from ABM results. Formalism will ensure verifiability and replicability,
and so will not only increase trust in the field and its methods, but can also
open the gate for further scientific developments, including automatisms.

Replication

• Compare track records of various forecasting methods (g.6.8). This
pinpoints the role of replication for verification in ABM. In such complex
systems, error can come from several sources, and it is important that design
and programming errors are discarded as soon as possible. Replication by
different teams is a simple way of ensuring some degree of validity, and its
starting to become a standard in the field. At least, the level of description
of a system should be detailed enough so a replication can be built. The
need for replication is well illustrated in the re-implementation that located
serious weakness in the influential Axelrod’s norms model [?].

• Assess acceptability and understandability of methods to users
(g.6.9). Sharing of models and code between practitioners is facilitated by
this [?]. Not all the field researchers have computer science education, so the
development of workbenches and languages in which ABMs can be easily
developed, debugged, tested and used is key to the development and spread
of the field [?]. As a matter of fact, in such a multi-disciplinary area, accept-
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ability and understandability endowing sharing might well have been the
sparkle behind the huge growth of ABM.

• Describe potential biases of forecasters (g.13.6). Again the role of ex-
perimenter. A good encompassing model will allow for the experimenter to
be represented in it, and the weaknesses of the models must be represented.
Biased forecasting (as stubborn stake-holders, as... ) are a liability of any
model, so there should be a description of what those biases could be and
how sensitive is the model to biases coming from those people involved.

4 Concluding Remarks

Many of the ABMs in the literature have explanatory vocation; they search
explicit causality from the generative mechanisms that govern phenomena. In
fact, the mere choice of this modelling approach implicitly indicates that finding
good correlations is not enough for the modeller. If someone interested in the
evolution of a given macro-variable chooses the use of ABM as modelling tool,
he will be obliged to break up the system in entities and interactions, to create
a detailed simulation model as inference tool and to finally aggregate again in
order to analyse the dynamics of the variable. If the model is not theoretical,
the researcher will also need to collect data to parametrise the sub-processes and
interactions that take place in the model, which is a very demanding task and
not always possible to perform. Such effort is justified only if the modeller is
interested in “how” the phenomenon occurs and not just in “what” is going to
happen. This implies that if the prediction power of the results relies on data,
it is intrinsically more difficult to parametrise correctly an agent based model
than a model simply aimed at forecasting through correlation.

Apart from that, there are additional problems to make predictions in social
systems where many of the processes are modelled stochastically. A prediction in
a non-deterministic model is a probability function associated with the solution
space. To know if a model predicts properly, we should compare that function
with the frequency of occurrence of events under the same assumptions. The
problem lies in the fact that often in many social systems, as in many forecasting
problems, we just have a unique realisation of the event and hence it is difficult
to distinguish if the forecast matches accordingly to the confidence intervals or
if the model is simply not valid.

Those two problems of forecasting with ABM, together with the behaviour of
chaotic systems, are just a sample of the complexity of the target systems that
we usually face with and the difficulty of making prediction in those contexts.
Notwithstanding, in our opinion this is not an excuse for not introducing to our
field the best-practises of other disciplines, such as forecasting. Our community
should carry on applying rigour to understand “how” the phenomena occur,
where complex systems sciences in general and agent based modelling in partic-
ular are leading many advances. However, we should also incorporate as far as
possible those guidelines provided by the methodologies specialised in answer to
“what”.
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